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Abstract
Integrating a database query language into a programming lan-
guage is becoming increasingly important in recently emerging
high-level cloud computing and other applications, where efficient
and sophisticated data manipulation is required during computa-
tion. This paper reports on seamless integration of SQL into SML#
– an extension of Standard ML. In the integrated language, the type
system always infers a principal type for any type consistent SQL
expression. This makes SQL queries first-class citizens, which can
be freely combined with any other language constructs definable in
Standard ML. For a program involving SQL queries, the compiler
separates SQL queries and delegates their evaluation to a database
server, e.g. PostgreSQL or MySQL in the currently implemented
version.

The type system of our language is largely based on Machi-
avelli, which demonstrates that ML with record polymorphism can
represent type structure of SQL. In order to develop a practical lan-
guage, however, a number of technical challenges have to be over-
come, including static enforcement of server connection consis-
tency, proper treatment of overloaded SQL primitives, query com-
pilation, and runtime connection management. This paper describes
the necessary extensions to the type system and compilation, and
reports on the details of its implementation.

Categories and Subject Descriptors H.2.3 [Database Manage-
ment]: Languages—Database (persistent) programming languages

General Terms Design, Languages

Keywords SQL, Polymorphism, Type System, Interoperability,
SML#

1. Introduction
Smooth integration of a database query language into a program-
ming language is essential for any high-level applications that re-
quire efficient processing of large amount of data. The need of this
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integration will become particularly important in recently emerg-
ing high-level cloud computing, where sophisticated data manipu-
lation beyond simple data aggregation will be required. Query lan-
guage integration will also make currently wide-spread Web pro-
gramming through various meta-level “framework” such as Ruby
on Rails much more reliable.

The need of proper integration of a database query language
and a programming language has been recognized and investigated
in database programming community for more than two decades.
See [4] for an early survey in this area. Since then a number of
query language bindings and embeddings in general purpose pro-
gramming languages have been proposed and implemented. Ex-
amples include SQLJ [13] and more recent LINQ [23] and Ferry
[16] middle-ware. Compared with SQL command string interface
to database servers, these database binding frameworks certainly
increase flexibility and ease of use in accessing databases from pro-
gramming languages. However, they still do not achieve seamless
integration of a database query language into a host language type
system. Existing database bindings either restrict full functionality
and generality provided by their target database servers, or they do
not treat database queries as first-class citizens in the type systems
of the host programming languages.

There have also been a number of proposals for high-level
database programming languages that integrate declarative queries
in their type systems. Some notable examples include GemStone
(OPAL) [11], Machiavelli [30], O2 [19], and Fibonacci [2] to
name a few. While these approaches provide uniform integration of
database queries in a programming language, it remains to be seen
whether or not some of these approaches would become a practi-
cal alternative to SQL. Based on long and intensive research and
development of the relational data model [8], relational database
systems have realized highly optimized data manipulation for large
amount of data with various practical supports such as transaction
management and network access. All of these features are made
available through SQL, which is the well established and stan-
dardized query language for relational database systems. Perhaps
due to this reason, most of applications that require both efficient
database manipulation and programming still use general purpose
programming languages such as C or Java with SQL command
string interface to a relational database server.

This situation indicates that an “impedance mismatch” [22]
between a database system and a programming language still exists
in practice.

To eliminate this mismatch, we must develop a high-level pro-
gramming language that seamlessly integrates SQL in such a way
that SQL queries are first-class citizens in the language type sys-
tem and that they are evaluated by a practical database server. This
paper reports on one such integration, where SQL is seamlessly in-
tegrated in SML# [32], an extension of Standard ML [24]. In our
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development, we adopt polymorphic typing of Machiavelli [30],
where the authors suggested that the programming language ML
can be extended with an SQL-style declarative query language.
The language proposed in [30] is, however, conceptual one focus-
ing only on typing issues; no implementation strategy is considered
or developed. As outlined in the next section, a number of techni-
cal challenges have to be overcome before a practical language can
become a reality. In the present paper, we have solved those prob-
lems and have developed a compiler for SML# extended with SQL.
In this extended language, SQL queries are first-class expressions
directly definable in the language type system, and are evaluated
by an external database server. Thanks to this feature, Standard ML
programmers can readily enjoy efficient and practical database pro-
gramming in their Standard ML code.

In addition to solving technical problems in language design
and typing, we have also developed an implementation technique
for connecting static semantics of SQL in the host language type
system, and its dynamic semantics realized by an external database
server. This should be useful for extending a typed higher-order
language with various domain specific languages, not restricted to
SQL.

All the results reported in this paper has been implemented
in our SML# compiler. Most of them have already been made
available in SML# version 0.60 or later releases [32].

1.1 Related works
Before presenting our technical development, we compare our ap-
proach with some more related works.

The conventional and still widely used approach to database
programming is to construct SQL command strings directly and
send them to a database server using low-level database server
interfaces such as SQL/CLI and JDBC. Embedded SQL such as
ECPG of PostgreSQL and SQLJ [13] supports a form of macro
SQL statements that are expanded by a preprocessor to those low-
level database library calls. Both of them are unsatisfactory in
many ways; type-checking is far from adequate, and the interac-
tion with the host language construct is rather limited. In order to
improve type safety and host language interface of preprocessor-
based approach, several domain specific embedded languages [18]
have been proposed and implemented. HaskellDB [20] implements
a set of monadic term constructors corresponding to relational op-
erators. ARARAT [14] provides C++ template for composing SQL
queries. Ur/Web [7] provides a meta-programming framework for
the programmer to generate type-consistent SQL queries through
type computation. LINQ [23] and Ferry [16] attempt to provide
a language independent layer for querying various data structures
including relational database. DHS [15] implements a combina-
tor library for generic manipulation of collection types that are to
be compiled to Ferry. While these approaches provide high-level
database access, they do not fully achieve seamless integration of
SQL into a general purpose programming language to the extent
we wish to achieve.

We note that SQL is an algebraic language based on the rela-
tional algebra. In this language, relation-valued expressions includ-
ing SELECT expressions can be used to construct another query ex-
pression. This properly makes SQL an elegant and powerful data al-
gebra for relations. Seamlessly integrating SQL in a programming
language must at least mean that relations are first-class citizens
and their operations are freely combined with other language con-
structs in the host programming language. This is a common-sense
knowledge in functional programming. For example, consider the
case of integrating an algebra of lists in ML. Everyone unanimously
expects that lists are first-class citizens and associated operators
to construct and manipulate lists can be freely combined with any
other language constructs. SQL should be given the same status,

without scarifying its features specified in the standardized lan-
guage definition and its efficiency realized by a matured external
database server. Unfortunately, however, there does not seem to ex-
ist any implemented general purpose programming language that
achieves this status for SQL. This is the property we attempt to
achieve in SML#.

Since relations are well-defined mathematical objects, it should
be possible to extend a type theory of programming languages with
data algebra on relations. Based on this general observation, several
database programming languages have been proposed, including
GemStone [11], Machiavelli [30], Napier88 [26], Iris [3], Fibonacci
[2], and Kleisli [34]. All of those languages, by their construc-
tion, seamlessly integrate advanced database queries in their type
systems and evaluation models. See [33] for various typing issues
in database queries, and [21] for a survey on various approaches
to database and language integration. However, it is non-trivial to
make those languages practical database programming languages
that can handle hundreds of millions of tuples efficiently. Com-
pared with the high maturity of optimization and implementation
techniques of relational database systems, optimization and imple-
mentation techniques for advanced data models realized in those
new database programming languages do not seem to have been
well developed.

The goal of the present paper is to make the SQL itself seam-
lessly available in a practical general purpose programming lan-
guage. For this purpose, we must first extend the type system of the
host programming language so that SQL statements can be repre-
sentable as typed expressions. An extension of ML type inference
for generalized relational algebra presented in [29] is perhaps the
first such example. This type system and its refinement [28] were
the basis of the type system of Machiavelli [6, 30]. We design our
type system largely based on this approach. However, in this pa-
per, instead of uniformly integrating generalized relational algebra
in its type system and evaluation model, we develop a type system
that precisely represents polymorphic typing of the SQL language
itself as defined in its language standard, and develop a compilation
method to delegate their evaluation to an external database server.
This requires careful design and development beyond the language
design reported in [6, 30].

Another approach to integrate database queries and program-
ming constructs is to compile high-level expressions into SQL [9].
Links [10] takes this approach in designing a Web programming
system. The type system sketched in [10] appears to be based on the
observation similar to [6, 30] – it uses sorted row variables [31] in-
stead of kinded typing [28, 29], but these two formalisms on record
polymorphism are equivalent for typing query expressions. Links
compiles relation-valued expressions, possibly involving function
applications and other language constructs, into SQL. The resulting
system achieves integration of database queries and programming
language constructs, but this is only to the extent that the language
constructs can be compiled to SQL commands. While this compile-
to-SQL approach would be useful for some target areas such as
Web programming, it is not obvious that this approach scales up to
large and complex application development that requires a general
purpose programming language and the full functionality of SQL.

We note that any practical general purpose programming lan-
guage involves a number of advanced features to form a complex
system whose semantics can (at least under the current state-of-the-
art) only be realized by a sophisticated compiler. This is true for
Standard ML. SML# compiler, for example, contains more than
0.3 million lines of code. The SQL language itself also contains
various features such as grouping and duplicate controls in SELECT
lists, and transaction management in data manipulation. All these
features are indispensable for serious application development. Our
major technical contribution is to design a type system that can
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precisely represent the SQL language in Standard ML, to develop
a compilation method that seamlessly combines the dynamic se-
mantics of Standard ML expressions realized by a Standard ML
compiler and the semantics of SQL queries realized by an exter-
nal database server, and to implement it in the SML# compiler that
compiles the full set of Standard ML.

1.2 Paper organization
The rest of this paper is organized as follows. Section 2 discusses
the problems to be overcome and outlines our strategy. Section 3
describes the language and its type system. Section 4 describes the
details of its implementation. Section 5 concludes the paper with
suggestions for further investigations.

2. Problems and our strategy
We have chosen Standard ML as the base language for our database
extension. This is not accidental. In this section, we review the re-
quirements and problems in achieving our goal of seamless inte-
gration, and outline our development.

2.1 Expressions and typing of SQL
We begin by reviewing the basic properties of SQL in the perspec-
tive of programming languages.

SQL can be characterized as a impure functional language.
Its main components, i.,e. SELECT statements, are relation-valued
expressions that can be freely composed as far as each sub-phrase
is type consistent. For example, a query such as

SELECT name, age
FROM people
WHERE age >= 25

(Q)

is an expression denoting a set of tuples of name and age and can
be used as a source relation in any other queries. SQL program-
ming consists of composing those relation-valued expressions. In
addition to those functional expressions, SQL also contains im-
perative features such as those for updating the database state and
transaction management, which assumes sequential evaluation. To
represent those expressions, eager functional programming is the
most appropriate framework. Moreover, since SQL programming
involves manipulation of record structures across multiple tables,
it is essential to enforce type discipline that statically checks com-
plex queries before sending them to a remote database server. As
observed in [30], SQL expressions are inherently polymorphic in
the structures they manipulates. For example, the above very sim-
ple query is polymorphic in several ways: this query can be issued
against any database that contains at least a people table having at
least name field of any type and age field of numerical type. This
indicate that a language containing SQL should have a polymorphic
type system preferably with type inference.

Base on these observations, a basic strategy of extending ML to
represent SQL-style database queries was proposed in [29, 30]. In
their approach, a query expression is considered as a polymorphic
function acting on an appropriate structure composed of labeled
record and set data types. For example, the query Q above would
be given a polymorphic type of the following form (in the notations
we use in this paper):

Q : [’a,’b#{name:’a, age:int},’c#{people:’b}.
’c db -> ’b relation]

This is the type ’c db -> ’b relation in prenex form where
the set of bound type variables are explicitly listed in its pre-
fix ’a,’b#{name:’a, age:int},’c#{people:’b}. Notation
’b#{name:’a, age:int} represents a type variable ’b with a
kind constraint #{name:’a, age:int} indicating the fact that

any instance of ’b must be a labeled record (tuple) type that con-
tains at least name:’a and age:int fields. By this polymorphic
typing with record kind constraints, their approach represents the
precise polymorphic nature of Q, i.e. it is a query that can be evalu-
ated against any database that contains at least a people table each
of whose tuples contains at least integer-valued age column and
name column of any type.

We roughly follow this approach. Among the ML family of
languages, we consider Standard ML the most appropriate one for
the following reasons.

• Its eager functional semantics with imperative features make an
ideal framework for integrating relation-valued query expres-
sions with imperative features such as transactions.

• Its type system and operational semantics has been rigorously
specified and their details are well documented [24].

• The type theory and implementation method for extending
Standard ML with record polymorphism has been well estab-
lished [28, 31].

We base our development on SML#, which is an extension of
Standard ML with record polymorphism [28] and interoperability
with C language. These two features provide sufficient basis for
seamless extension of Standard ML with SQL.

2.2 The remaining problems
The solutions so far proposed in the literature are, however, only
partial for extending Standard ML with SQL. There are a number
of problems that have to be worked out before realizing a practical
language that achieves truly seamless integration of SQL. Among
them, the following are major technical challenges.

1. Extensions of the type system. Record polymorphism is useful
in achieving the integration but adding this alone to Standard
ML type system does not yield a type system for SQL. We need
to construct typing mechanisms for the following.

(a) Server typing and type checking. We need to develop a typ-
ing mechanism to declare a database schema on a database
server, and to type check its correctness against actual con-
tents of the server.

(b) Server connection typing and its consistency enforcement.
Since an SQL command needs to be sent to a database
server, all the query components consisting of the command
must only reference to a unique server connection. With
higher-order functions, enforcing this requirement turns out
to be a subtle typing problem.

(c) A proper treatment of null values. Since a column may
contain null values, we cannot simply infer a typing of the
form ’a::{age:int} for expression age >= 25.

(d) Overloaded operator and constants. Literals such as 25
above play double roles; one for a constant of the host lan-
guage, and one that denotes the same constant in a remote
database server. These two have different representations.
Even worse, 25 in an SQL query represents not only an in-
teger but also a floating-point number. In addition, operator
such as > for comparison is overloaded with several atomic
types. In Standard ML definition, overloading is resolved
statically. If we simply adopt the same strategy, then the
flexibility of SQL expressions would be severely limited.
Again, developing a precise typing mechanism to treat these
overloading requires delicate development.

2. Compilation and evaluation. Expressions in a functional lan-
guage is compiled to a code and executed with a runtime sys-
tem with a specialized memory management. It is relatively
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straightforward to add compilation rules for their own query
constructs and execute them in their own runtime system. For
this purpose, it is sufficient to define a data structure for tu-
ples and relations and evaluation strategy for each primitive
operations in the relational algebra. Newly designed database
programming languages usually adopt this strategy. Our pur-
pose is different. Instead of developing a query execution en-
gine inside of the language runtime system, we need to call
an existing SQL database server. For this purpose, we need to
develop both a compilation method and a runtime mechanism
for delegating evaluation of SQL query expressions to a remote
database server. Since Standard ML is a higher-order functional
language, seamless integration of SQL implies that SQL queries
are intermixed with function definitions and function applica-
tions. This requires us to carefully design the compilation algo-
rithm so that it separates SQL query expressions appearing in a
given expression.

2.3 Summary of our development
We have worked out these problems, have developed compilation
algorithms and have implemented a new generation of Standard
ML that seamlessly integrates SQL by extending our SML# com-
piler. The extension to Standard ML syntax is carefully designed
so that it maintains backward compatibility with the Definition
of Standard ML. In our development, we have used PostgreSQL
and MySQL for our target database servers, considering their wide
availability; other DBMS should equally be possible, as described
later in section 4.6.

In SML# with our extension, the query Q is written as follows.

val Q =
_sql db => select #person.name as name,

#person.age as age
from #db.people as person
where SQL.>= (#person.age, 25)

where SQL.>= is the greater-or-equal comparison for SQL values.
One can see that the above expression is a direct representation of (a
verbose version of) the query Q. Similar expressions may be pos-
sible in some programming languages with embedded SQL com-
mands, which are translated to a sequence of primitive statements.
Different from those syntactic shorthands, this is an expression in
the language. The extended SML# compiler type checks this and
infers the following polymorphic type.

val Q = fn
: [’a#{people: ’b},

’b#{age: int, name: ’d},
’c,
’d::{int, word, char, string, real, ’e option},
’e::{int, word, char, bool, string, real}.
(’a, ’c) SQL.db

-> {age:int, name:’d} SQL.query]

This type indicates that Q is a function that takes a database of type
(’a, ’c) SQL.db whose contents is of type ’a#{people:’b},
and returns a query of type {age:int,name:’d}. The extra pa-
rameter ’c to a database type ’a#{people:’b} is there to en-
sure the consistent usage of connection and will be explained later.
’d::{· · ·} constrains that ’d can be instantiated only with a type
shared among ML and SQL. It should be intuitively clear that the
inferred type represents the precise polymorphic nature of the query
Q, and indeed it is a principal type for Q.

In an ML-style type system, the fact that a principal type is
inferred for this expression immediately means that this expression
can be freely combined with any other language constructs as far
as its usage is type consistent. Figure 1 shows example programs

to define a database server, to connect it, to insert tuples, to execute
query Q, and to fetch the results as a list of SML# records. It
shows an actual interactive session in SML#. The lines starting with
prompt “#” and ending with delimiter “;” are user input, which are
followed by a system response.

3. SML# extended with SQL
This section presents the language we develop. We first introduce
SML#, and develop necessary extensions in syntax, typing mech-
anisms, and operational semantics. We then show a programming
example demonstrating the benefit of seamless integration of SQL
into SML#.

3.1 SML#: Standard ML with record polymorphism and
interoperability with C

SML# embodies record polymorphism and infers a polymorphic
type for record operations as seen in the following example:

# fun getName x = #Name x;
val getName = fn : [’a#{Name:’b}, ’b. ’a -> ’b]

where #l selects the l field from a record. getName takes a record
and returns its Name field. This record polymorphism provides a
basis to extend Standard ML with SQL expressions.

In addition, SML# supports interoperability with the C language
through its natural data representation [27]. Under this scheme,
internal data representations in SML# and C have the following
correspondence: atomic types including int and real are the same
as int and double in C; τ array has the same representation
as a pointer to an array of τ in C; and a labeled record type
{l1:τ1,..., ln:τn} has the same representation as a pointer to
a structure in C that contains the elements of types {τ1, . . . , τn}
in the lexicographical order of their labels {l1, . . . , ln}. Based
on these properties, SML# allows the programmer to declare an
external library function defined in C and use it as an ordinary ML
function. The following example code imports C library function
sin:

# val sin =
dlsym (dlopen "/usr/lib/libm.so", "sin")
: _import real -> real;

val sin = fn : real -> real;
# sin 1.0;
val it = 0.841470984807 : real

where dlopen and dlsym are built-in library functions that open
and find a pointer to the named dynamically linked library func-
tion. After this declaration, sin is used as an ordinary ML expres-
sion of type real -> real, but application of sin directly calls
the C library function without any data conversion. In our develop-
ment, we use this feature to bind database server library functions
provided for C.

The syntax of SML# is that of Standard ML. For the explanation
purpose in this paper we consider the following subset of its core
language.

e ::= x | fn x => e | e e | {l1=e1,. . .,ln=en} | #l e

x ranges over the set of variables. fn x => e defines a (first-class)
function. {l1=e1,. . .,ln=en} constructs a labeled record. Other
features are mostly orthogonal to our SQL extension and can be
used without any problem. In examples, we also use the following
syntax.

• val x = e binds a variable x to an expression e.
• SQL.x is a variable x defined in the module named SQL. In

our implementation, which we shall describe in Section 4, most
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# val server =
_sqlserver "host=127.0.0.1 dbname=test"
: {people: {name: string, age: int}};

val server = "host=127.0.0.1 dbname=test"
: {people: {age: int, name: string}} SQL.server

# val db = SQL.connect server;
val db = <conn>
: {people: {age: int, name: string}} SQL.conn

# val q =
_sql db =>

insert into #db.people (name, age)
values ("Alice", 24);

val q = fn
: [’a#{people: {age: int, name: string}},

’b.
(’a, ’b) SQL.db -> SQL.command]

# val r = _sqlexec q db;
val r = () : unit

# val q =
_sql db =>

insert into #db.people (name, age)
values ("Bob", 25);

val q = fn
: [’a#{people: {age: int, name: string}},

’b.
(’a, ’b) SQL.db -> SQL.command]

# val r = _sqlexec q db;
val r = () : unit

# val Q =
_sql db =>

select #person.name as name,
#person.age as age

from #db.people as person
where SQL.>= (#person.age, 25);

val Q = fn
: [’a#{people:’b},

’b#{age:int, name:’d},
’c,
’d::{int, word, char, string, real, ’e option},
’e::{int, word, char, bool, string, real}.
(’a, ’c) SQL.db
-> {age: int, name: ’d} SQL.query]

# val r = _sqleval Q db;
val r = <rel> : {age: int, name: string} SQL.rel

# val x = SQL.fetchAll r;
val x = [{age = 25, name = "Bob"}]
: {age: int, name: string} list

Figure 1. Example Program in SML#

resources (functions and types) for the SQL extension are orga-
nized into the SQL module, and they are referenced through this
notation.

Its type system is that of Standard ML extended with record kinds
on type variables. We let C range over type constructors such as
list or array. Sometimes we use option type constructor to
represent values possibly containing null. We use the following
syntax for types.

• The set of monomorphic types (ranged over by τ ) is given by
the following syntax

τ := b | τ -> τ ′ | {l1:τ1,. . .,ln:τn} | τ C

where b ranges over atomic base types such as int; τ -> τ ′

is a function type; {l1:τ1,. . .,ln:τn} is a labeled record type;
and τ C is a constructor type such as int list.

• ’a,’b,. . . are type variables (ranged over by t).
• [t1#k1,...,tn#kn.τ] is a polymorphic type of τ with bound

type variables t1, . . . , tn. Each ti is constrained with a kind
ki. A kind k is either empty indicating no constraint or a
record kind {l1:τ1,. . .,ln:τn} denoting all possible records
that contain at least the specified fields.

3.2 Syntax extension for SQL
To represent SQL, we need to introduce the following.

• A server definition on which SQL is run.
• SQL “commands”. Among them a SELECT command is an

algebraic (functional) expression that returns a relation. The
others are those that change the server state.

Our aim is to represent SQL queries as directly as possible, and
allow them as first-class citizens in the language. The important
step to achieve this goal is to identify all the syntactic elements
that are implicit in a SELECT command and introducing them as
expressions in SML#. Introduction of a server definition and other
SQL commands are relatively straightforward.

To identify those implicit syntactic shorthands, let us examine
the following simple SELECT command.

SELECT name FROM people WHERE age >= 25

This implicitly assumes the following.

1. Field names name and age in SELECT and WHERE clauses denote
the results of the corresponding field selections from a tuple in
the table given in FROM clause.

2. SELECT phrase creates a tuple whose labels are inherited from
the field names.

3. This query is executed against a given database connection.
This implies that the table name people in FROM clause rep-
resents the selection of the people table from a database con-
sisting of a named collection of tables.

The first two points are made explicit by the following more ver-
bose version of the same SQL command

SELECT person.name AS name, person.age AS age
FROM people AS person
WHERE (person.age >= 25)

where a variable person is bound to a representative tuple, from
which the mentioned fields are extracted. To represent the third
point, we represent a query expression as a function that explicitly
takes a database connection db as a parameter and selects the
referenced table people from db. This analysis yield the example
expression we gave in Section 2.
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e ::= ... (SML# expressions)
| _sqlserver [string] : τ (server definition)
| _sql x => sql (SQL expressions)
| _sqleval e (query evaluation)
| _sqlexec e (command execution)
| #x.l (selection)

sql ::= select | insert | update | begin | commit | rollback

select ::= select e [ as l ] . . . e [ as l ]
[ from e as x . . . e as x ]
[ where e ]
· · · (other clauses)

insert ::= insert into #x.l (l, . . ., l)
values ( {e|default}, . . ., {e|default})

update ::= update #x.l [ as x ]
set (l, . . ., l) = (e, . . ., e)
[ from e as x . . . e as x ]
[ where e ]

delete ::= delete from #x.l [ as x ]
[ where e ]

Figure 2. The syntax of SQL extension in SML#

We also need to introduce syntax for executing an SQL query
command against a database connection. There should be two
forms, one for SELECT, which returns a relation, and the other
for all the other commands which do not return any value.

Based on these analyses, we define the syntax extension to
SML# as shown in Figure 2. In this definition, note that e ranges
over any expressions including those of SML#. Those who are fa-
miliar with SQL should immediately recognize that these exten-
sions are direct representation of (a subset of) SQL. SQL contains
more features, which can be added without any problem, as we dis-
cuss later.

3.3 Typing extension for SQL
We should emphasize that these SQL expressions are not macro but
they are all legal expressions that can be freely combined with other
SML# expressions. Moreover, each sub-expression e appearing in
those SQL syntax can be any expression definable in SML#. Of
course not all syntactically well-formed expressions are legal; the
set of expressions that have well-defined meaning are those that
have a type inferred by the type system.

Our goal is to extend the type system of SML# so that it always
infers a most general type for any legal SQL expression. Since the
type system guarantees that any typable expression can be freely
combined as far as its type is consistent, this achieves our goal of
seamless integration of SQL into Standard ML.

The type system is defined through a set of typing rules to derive
typing judgments in the style of [24]. We have worked out the
details of the typing rules for the above SQL extension. In this
section, rather than giving a formal typing derivation system, we
present the type system by explaining the meanings of new type
constructors and the behavior of the associated typing rules.

3.3.1 The set of new type constructors
The set of types of SML# is extended with the following new type
constructors for the SQL extension.

τ := · · · | τ server | τ conn | τ query | command | τ rel

| (τ, τ ′) db | (τ, τ ′) table | (τ, τ ′) row

| (τ, τ ′) value

Intuitive meanings of these types are the following; their precise
meaning will become clear when we explain typing properties of
associated operations. τ server denotes a server of a database
of type τ by which SQL expressions are evaluated. In what fol-
lows, we call such a server as an SQL server. τ conn represents
an established connection to an SQL server of type τ server.
τ query represents an SQL SELECT command that return a re-
lation of type τ . command is the type of the other SQL commands
such as insert and rollback, which cause some side effects to
the SQL server state. τ rel represents a relation containing tu-
ples of type τ returned from an SQL server as a result of query
evaluation. The other four types (τ1, τ2) db, (τ1, τ2) table,
(τ1, τ2) row, and (τ1, τ2) value are used to type expressions
inside of SQL queries and commands. They respectively denote an
active database connection of type τ1, a table of type τ1 in an ac-
tive database connection, a tuple of type τ1 in an active database
connection, and an atomic value of type τ1 in an active database
connection. τ1 of type value is either an atomic base type b for val-
ues without null or b option for values possibly containing null.
The extra second type parameter τ2 in these types is introduced to
ensure the consistency of database connections in SQL queries we
shall explain below.

Using these types, we represent legal SQL expressions through
SQL constructs. In the following, we introduce SQL constructs and
explain their typing relations.

3.3.2 SQL servers
A server expression _sqlserver [string] : τ declares that
there is an SQL server of type τ at the location specified by string .
This string may also contain some extra information to estab-
lish a connection to the server. In our current version, the location
specification string is designed so that it is expressive enough
for PostgreSQL or MySQL servers. τ specifies the set of tables
in the database as a form of record type. This expression is al-
ways well typed with type τ server. Note that giving a type to
servers makes them first-class values. This feature gives flexibility
to database programming. For example, a function can take list of
servers with additional information such as their capacities and can
dynamically choose appropriate one at runtime.

A runtime value of a server expression is a server object consist-
ing of the server information including its location and a runtime
representation of its type τ . The only operation on a server object
is the primitive function

SQL.connect : [’a. ’a server -> ’a conn].

This primitive attempts to connect the SML# runtime system to the
SQL server using the location information stored in the server ob-
ject of type τ server. If the attempt succeeds, then it dynamically
checks that the connected server has indeed the type τ stored in
the server object. This typechecking is done by retrieving database
schema information from the remote SQL server. If the typecheck
succeeds, then the primitive succeeds and returns a connection ob-
ject of type τ conn, which can be used to issue SQL commands. If
either the connection attempt or the typecheck fails then this prim-
itive raises a runtime exception.

3.3.3 Consistency of database connection
A distinguishing features of our language is that all the components
of SQL are given types so that they are treated as first class val-
ues. This achieves powerful SQL programming using higher-order
functions. As we noted above, in our system, database servers and
the corresponding database connections are all first-class values. As
a consequence, one can write a program that manipulates multiple
database connections to different database servers. This flexibility
raises one subtle issue in ensuring well-definedness of SQL query
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execution. A straightforward combination of higher-order functions
and first-class database connections would inadvertently admit an
SQL query that involves multiple database connections. However,
an SQL query needs to be evaluated by a single SQL server through
a single database connection. To see the problem, consider the fol-
lowing example.

fun f db1 =
_sql db2 => select #r1.c1, #r2.c2

from #db1.t1 as r1, #db2.t2 as r2

The function f generates an SQL SELECT command for a database
connection db2, but it uses another database connection db1 re-
ceived as a parameter. This function definition is valid only when
db1 and db2 denote the identical connection. The following exam-
ple is an invalid use of f.

val conn1 = SQL.connect (_selserver "DB1");
val conn2 = SQL.connect (_selserver "DB2");
_sqleval

(_sql db =>
select · · · from · · ·
where · · · (_sqleval f db conn1) · · ·)

conn2

This results in sending to an SQL server "DB1" a query that in-
volves a reference to another database server "DB2". A sound inte-
gration of SQL into SML# type system requires that the extended
type system should statically detect this form of inconsistency due
to multiple database connections in one SQL query.

We solve this problem using existential types proposed in [25].
The idea is to consider a database connection of type τ1 conn as
an abstract package of type

τ1 conn = ∃τ2.(τ1, τ2) db

where τ2 is an abstract witness representing a unique connection
established for a particular connection to a database. Since exis-
tential types are second-order types, general introduction of this
mechanism is beyond the power of ML typing on which SML#
is based. So we introduce this mechanism only for the expressions
_sqleval and _sqlexec that use a database connection. These ex-
pressions temporally opens the package by generating a unique τ2

and converting a database connection type τ1 conn into a database
type (τ1, τ2) db. All the database components (tables and val-
ues) that forms an argument to the same _sqleval or _sqlexec
are typed with the same unique witness type τ2. This ensures the
consistent use of connection without introducing ad-hoc restriction
on the usage of first-class SQL constructs. The second type pa-
rameter τ2 in (τ1, τ2) db, (τ1, τ2) table, (τ1, τ2) row, and
(τ1, τ2) value are introduced for this purpose. The precise typ-
ing rule is rather involved, but it is a standard application of ex-
istential types. As we shall describe below, our implementation
achieves an efficient and simple type inference method specialized
for _sqleval and _sqlexec.

3.3.4 Component selection expression
The select expressions and other SQL commands contains com-
ponent selection expressions of the form #x.l, which denotes the l
component of the value denoted by x. The value may be a database
or a tuple, both of which have a labeled record structure. Correctly
inferring the most general type of this construct is a key to achiev-
ing seamless integration of SQL into SML#.

For this expression, the type inference system performs the
following.

• Infer a type of x. The result should be either a database type
(τ1, τ2) db or a tuple type (τ1, τ2) row. In these types, τ1

is a record type representing their structure, and τ2 represents a
unique database connection.

• It unifies τ1 with a fresh type variable with a record kind
’a#{l:’b}.

• If unification succeed, then the type inference system computes
an instance of the component type ’b. Let the result be τ3.
The type inference system returns (’b, τ3) table if #x.l
appears in a context that requires a table, otherwise it returns
(’b, τ3) value.

3.3.5 SQL SELECT command
With these extensions, SQL SELECT command can be typed. Its
syntax in our extension has the following form.

_sql db => select e1 as l1 . . . en as ln
from e1 as x1 . . . ek as xk

where ew

For this expression, the typechecker performs the following.

• Infer a type τ for ew and unify τ with (bool, τ0) value.

• For each ei, infer types τ i and unify τ i with (τ i′, τ0) table,
and add the bindings {xi : (τ i′, τ0) row} to the typing
environment.

• Under the extended typing environment, infer types τ1, . . . , τn

for e1, . . . , en.
• If all the inference steps succeed, then it returns the type
{l1 : τ1, . . . , ln : τn} query as a result.

3.3.6 Sub queries
SQL allows arbitrary nesting of SELECT commands by treating the
result of a SELECT command as a table. This is simply done by the
introduction of the following typed primitive.

SQL.subquery : [’a, ’b.
((’a, ’b) db -> ’a query)
-> (’a, ’b) db -> (’a, ’b) table

The first parameter is a select expression, and the second param-
eter is the current database connection. This converts the select
expression to a virtual table on that connection.

3.3.7 Overloaded operators
In addition to the mechanism above, one more extension is required
to infer a desired polymorphic type for SQL expressions. To explain
this, we note that an SQL expression is not only polymorphic in
the database structures it manipulates but it also implicitly uses
overloaded operators such as comparison >. Since conventional
SQL commands are executed under a fixed monomorphic database,
all the overloading are resolved by the server without any problems.
However, if we treat a query as a first-class value, then we need to
represent the overloaded operators as first-class values as well. To
see the need, consider the following query.

fun f x =
_sql db => select #person.name as name

from #db.people as person
where SQL.> (#person.age, x)

There are multiple possible types for age and accordingly there are
possible multiple instances of SQL.>. Since SML# is a typed lan-
guage, we must infer a polymorphic type of this function. Instead
of introducing a general mechanism for overloading such as type
classes [17], which would significantly complicate the underlying
type system of Standard ML, our solution is to introduce a new
kinded type variable of the form ’a::{τ1,. . .,τn} representing
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the fact that type variable ’a is an overloaded type whose instance
is restricted to one of its list τ1,. . .,τn. The type of the parameter x
in the above function is type variable ’a with the following kinding:

’a::{int, word, char, string, real, ’b option},
’b::{int, word, char, bool, string, real}

The listed types are atomic types shared among ML and SQL.
Since the age column in the actual database may contain null,
the set of instances must contain int option as well as int
etc. Thus, the set of all possible instances of ’a is {int, word,
char, string, real, int option, word option, char option,
bool option, string option, real option} which is the
standard set of types allowed for the age field in an SQL database.
The same restriction applies to the result value of a column selec-
tion expression such as #person.name.

Combining all the typing mechanisms, our type system always
infers a principal type for any type-correct SQL expression. For the
above f, for example, the following type is inferred.

val it = fn
: [’a::{int, word, char, string, real, ’b option},

’b::{int, word, char, bool, string, real},
’c.
(’a, ’c) SQL.value
-> [’d#{people: ’e},

’e#{age: ’a, name: ’f},
’f::{int, word, char, string, real,

’g option},
’g::{int, word, char, bool, string, real}.
(’d, ’c) SQL.db -> {name:’f} SQL.query]]

Although the inferred type is notationally involved, it is not hard
to see that this is exactly the constraint imposed by the above SQL
query. It is this precise typing that achieves seamless integration of
SQL into a typed polymorphic high-order functional language.

3.4 The operational semantics
Once we have worked out the typing structures of all the compo-
nents of SQL, the next step is to develop an evaluation model for
the SQL extension and to combine it in the compilation steps in
SML#. An expression in a functional language is compiled to a
code that generates a value denoted by the expression. In order to
seamlessly integrate SQL in this general model, we adopt the fol-
lowing strategy. For various SQL components that appear inside of
SQL expressions, we define their values to be the syntax tree rep-
resenting the component whose leaves may contain atomic SML#
values, and represent the runtime value of each primitive functions
operating on SQL components as a function that combines abstract
syntax trees. SQL construct _sql x => sql is compiled to a code
that takes a database connection and returns an abstract syntax tree
representing the corresponding SQL command to be sent to the
server through the connection. _sqleval and _sqlexec are im-
plemented as functions that take an abstract syntax tree, generate
an SQL string from the tree, and sends it to the server. In actual im-
plementation, we do not explicitly generate an abstract syntax tree
but generate its string representation on the fly.

In the case of _sqleval, it must perform additional task of
converting the returned result to the SML# runtime values. We
solve this problem by associating _sqleval with a function that
generates SML# values from the server’s result. The runtime
representation of τ rel is a value containing such a function.
SQL.fetchAll : τ rel -> τ list converts a query result to
an SML# list of records by invoking the conversion function.

3.5 Other SQL features and examples
The syntax of SQL contains additional components other than
those defined in the syntax extension in section 3.2. For example,
SELECT command has many clauses other than FROM and WHERE
such as ORDER BY. Some of those additional components require
extension to the syntax, and others are realized by adding primitive
functions. In this section, we take ORDER BY clause of SELECT
command as an example for the former, and logical operators
including EXISTS predicate for the latter. Other components can
be introduced similarly to one of these two.

The ORDER BY clause of SQL sorts tuples in the query result
according to columns in the select list as well as those of the tables
appearing in FROM clause. Original ORDER BY clause refers the
select list in anonymous way. To realize this behavior in our syntax,
we need to explicitly introduce a variable which is bound to a result
tuple. We use into keyword for this binding. The syntax of select
command is refined as follows.

select ::= select e [ as l ] . . . e [ as l ] into x

· · ·
order by e [{asc|desc}] · · · e [{asc|desc}]

The type of x following into is (τ1, τ2) rowwhere τ1 is a record
type representing the type of the result tuple. This x can be seen
from sub-expressions in the order by clause and is used to refer
to the select list.

Some of primitive operations in SQL expressions can be repre-
sented as typed primitive functions. The following typed primitives
represent SQL logical operators.

SQL.andAlso :
[’a. (bool, ’a) value * (bool, ’a) value

-> (bool, ’a) value]
SQL.orElse :

[’a. (bool, ’a) value * (bool, ’a) value
-> (bool, ’a) value]

EXISTS subquery expression can be introduced by the following
typed primitive, similar to SQL.subquery.

SQL.exists :
[’a, ’b. ((’a, ’b) db -> ’a query)

-> (’a, ’b) db -> (bool, ’b) value]

Using those features, the programmer can enjoy database pro-
gramming with full spectrum of SQL directly in Standard ML. Fig-
ure 3 shows an example that retrieves employee information from
an employment database and constructs a nested list of employ-
ees for each department. employees is a polymorphic query that
receives a condition for where clause and returns a list of pairs
of an employee’s name and his/her salary in descending order of
salary. employees’ is another polymorphic query obtained from
employees by applying it to a partial condition. depts holds the
list of pairs of a department name and its ID. The map function in
the definition of forEachDept performs iteration over the depart-
ment list and constructs and emits a query for each department. l1
and l2 hold resulting employee lists under different conditions.

4. Implementation
We have implemented the presented extension in SML# compiler.
Through our effort of modular and systematic extension of a com-
plex system of SML# compiler, we have developed an implemen-
tation technique for connecting static semantics of SQL in the host
language, SML#, and its dynamic semantics realized by an external
SQL server. This technique should be useful for extending a com-
piler with a domain specific language. In the next subsection, we
discuss the problem in extending an existing compiler and describe
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val db = _sqlserver "dbname=employment"
: {employee: {name:string, age:int,

salary:int, deptId:int},
department: {id:int, name:string}}

val conn = SQL.connect db

fun employees condFn =
_sql db => select #r.name, #r.salary

from #db.employee as r
where condFn r
order by #r.salary desc

fun employees’ condFn deptId =
employees
(fn r => SQL.andAlso

(SQL.== (#r.deptId, deptId),
condFn r))

val depts =
SQL.fetchAll
(_sqleval

(_sql db =>
select #r.name as deptName,

#r.id as deptId
from #db.department as r
order by #r.name)

conn)

fun forEachDept queryFn =
map (fn {deptId, deptName} =>

{deptName = deptName,
employees =

SQL.fetchAll (queryFn deptId) conn})
depts;

val q1 = employees’ (fn r => SQL.> (#r.salary, 5000))
val l1 = forEachDept (fn i => _sqleval (q1 i));

val q2 = employees’ (fn r => SQL.> (#r.age, 50))
val l2 = forEachDept (fn i => _sqleval (q2 i));

Figure 3. example of combination of ML and SQL

the implementation technique we have developed. We then reports
the details of the implementation in the subsequent subsections.

4.1 Implementation strategy
A natural way of extending a compiler with SQL would be to add
its syntax and the corresponding intermediate representations, and
then to add to each compilation phase the cases that process the
new components in such a way that the added SQL components
achieve the intended typing and runtime behavior. This approach
requires detailed analysis on interaction between the existing sys-
tem and new components, and is difficult for a large and complex
language such as a compiler of Standard ML including SML# com-
piler, which contains more than 300K line of code organized in
more than 20 compilation phases. This natural strategy would also
be problematic in extensibility and maintenance, since the added
extensions will become tightly built-in the core of the compiler.
In order to extend the SML# compiler efficiently and reliably, we
should localize the extensions and minimize the modifications of
the core of the compiler. Our basic strategy for achieving this goal
is to use the compiler’s functions as far as possible.

Extending a typed language with some new constructs requires
to implement their static semantics, which infers types and prop-
erly propagates them to the rest of the language, and their dynamic
semantics, which realizes the desired runtime effect. In our imple-
mentation, we have successfully organized the SQL extension in
such a way that both static and dynamic evaluation are realized sys-
tematically using the existing functionality of the SML# compiler.
This is based on our following observations.

Components of SQL expressions including “databases”, “ta-
bles”, and “rows” are all labeled record structures combined with a
type constructor for collections (relations). These components can
be represented in the type system of SML#, which supports record
polymorphism. We can then directly implement any SQL expres-
sion as a source program in SML#. This would yield a toy imple-
mentation of SQL in SML#. Of course, such a toy implementation
is not what we really want. Our goal is to seamlessly extend SML#
with SQL in such a way that the SQL part is evaluated by an ef-
ficient practical database server. However, as far as typing is con-
cerned, such a toy implementation is good enough; for each SQL
expression, we can generate a toy program whose type is the same
as that of the SQL expression. This means that we can obtain the
desired static semantics of an SQL expression by constructing an
appropriate toy source program that corresponds to the SQL ex-
pression. Moreover, types are only used for static enforcement of
legal combination of SQL expressions with other language con-
structs, and are not needed at runtime. A dynamic semantics of an
SQL expression is realized by generating an SQL command string
and sending them to an SQL server without using type informa-
tion. This process is also easily represented by an SML# program.
The desired SQL extension can then be realized by connecting the
static semantics realized by a toy implementation and the dynamic
semantics realized by a database server.

The above observation leads us to the following implementa-
tion strategy. The compiler first translates an SQL expression to a
source program that computes a pair of a toy implementation and
a target SQL command string. Each primitive operation of SQL is
translated to a source program that simultaneously composes both
the toy implementation and the target SQL command string. It is
not hard to define a data type for the source program so that the
type of the toy implementation becomes the type of the entire re-
sult. The value of the translated program is a pair of the toy imple-
mentation and the target SQL command string. So the remaining
thing for the compiler to achieve the desired dynamic semantics
is to compile _sqleval and _sqlexec to a source program that
takes the source program generated from an SQL expression, runs
the program to obtain a pair, throws away the first component, and
sends SQL command string stored in the second component to the
database server.

The first major phase of the SML# compiler is elaboration,
which translates a given abstract syntax to a basic source program,
called a core ML program, by expanding derived forms (sugared
syntax). Since most of the above process are definable in the core
ML language, the major part of SQL compilation can be imple-
mented by extending the elaboration phase of the SML# compiler
so that it translates SQL expressions to appropriate core ML pro-
grams described above.

In order to carry out the implementation based on this strategy,
we have to develop the following components and integrate them
in the SML# compiler.

1. Extension to the SML# type system. Although most of SQL
type structures can be representable in the core ML language
of SML#, a complete representation of actual SQL expressions
requires some extensions to its type system. The major one is
the introduction of existential types we explained in Section 3
to ensure that all the components in one SQL expression refer
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to the same database connection. Introduction of this feature
requires to extend the typed intermediate language of the SML#
compiler and its type inference system.

2. SQL type definitions. Under our strategy, the compiler gener-
ates a core ML program that achieves the static semantics of the
original SQL program. Those generated programs need to ref-
erence types of SQL component such as “tables” and “rows”.
This means that these types should be predefined and loaded
before the compilation.

3. Core ML program generation. After the preparation of the
above two steps, the compiler generates a core ML program
from a given SQL expression.

4. Connection management. In addition to compile SQL expres-
sions, the compiler and runtime system must also manage server
connection. An important additional role beside making server
connection is to dynamically check type conformance of the
sever database against the declared server type. Since types are
static entities that only exists during compilation, a special com-
piler support is necessary for this purpose.

5. SQL server binding. To communicate with an SQL server pro-
cess, we need primitive functions to access an SQL server.
Modern SQL servers usually provide such features as their
own low-level APIs. To make our implementation independent
of particular SQL server as much as possible, we introduce a
server binding module to abstract the low-level communication.

The following five subsections explain these major components.

4.2 Extension to the SML# type system
New typing mechanisms necessary for SQL expressions include
overloading and existential types.

4.2.1 Overloading compilation for SQL primitives
As we have explained in 3.3.7, we need to represent constant
literals and primitives in SQL expressions. For this purpose, we
have introduced a simple first-class overloading mechanism based
on polymorphic record compilation. Compared with type classes
in Haskell [17], the modification to SML# type system is simple,
and it can be implemented by small modification to the existing
mechanism for record compilation. Here, we outline the necessary
extension to SML# type system and the implementation. For the
sake of explanation, we consider an overloaded primitive O whose
instances is represented by a polymorphic type of the form

O : ∀t :: {b1, . . . , bn}.τ
where {b1, . . . , bn} is a set of base types. For this simplified set-
ting, each of instance functions of O is identified by a base type b
listed in the kind, which we write Ob.

To deal with overloading specified in the definition of Standard
ML, the original SML# type system already contains overloaded
kind of free type variables of the form t :: {b1, . . . , bn}. where
b1, . . . , bn are distinct base types. If these type variables remain
free at the top-level, they are not generalized but are instantiated
with the first component b1 of the list of types {b1, . . . , bn}. To
extend the type inference system with first-class overloading, we
have only to allow these type variables with overloaded kind to be
generalized. The kinded type system of SML# correctly propagates
and resolves overloaded instance types.

The above modified type inference system of course does not
reflect the dynamic semantics of overloaded primitive O. The com-
piler needs to resolve overloading by selecting appropriate instance
Ob according to an instance b of t. For this purpose, we apply
the idea of polymorphic record compilation and compile a term
with of overloaded primitive O to a higher-order function that

takes an appropriate overloaded instance as an extra parameter.
For this purpose, in the target language, an overload kind is ex-
tended to be a pair ({O1, . . . , Om}, {b1, . . . , bn}) by including
the set {O1, . . . , Om} of overloaded primitives involved. When
type variables with overloaded kinds are unified, the type system
takes the intersection of instance sets and the union of the primi-
tive sets. When polymorphic generalization is performed on those
overloaded variables, extra bound variable for each Oi is intro-
duced, and when polymorphic instantiation is performed, the ac-
tual instance primitive is passed as an additional parameter. With
this preparation, the compilation process is essentially the same as
that of polymorphic record compilation. For example, a function

val f = fn x => +(x,*(x,x))
: [’a::{int, real}. ’a -> ’a]

is compiled to the following term:

val f = fn I+ => fn I∗ => fn x => I+(x,I∗(x,x))
: [’a::({+,*},{int, real}).

Inst(+, ’a) -> Inst(*, ’a) -> ’a -> ’a]

where Inst(+, ’a) is the singleton type that denotes the primitive
+ for the type ’a.

In our actual extension, we allow each overloaded instance type
bi to take another overloaded type variable as its type parameter
to represent nested overloaded instances. By allowing the nesting,
we can define overloaded primitives not only over base types but
also over constructed types. This is needed to represent the set of
types shared among ML and SQL as described in section 3.3.7.
For example, in our SQL extension, the type of SQL.>, which is a
comparison primitive for SQL queries, is declared as follows:

[’a,
’b::{int, word, char, bool, string, real},
’c::{int, word, char, string, real, ’b option}.
(’c, ’a) SQL.value * (’c, ’a) SQL.value
-> (bool option, ’a) SQL.value ]

Overloaded type variable ’c in this example refers to another over-
loaded type variable ’b to form a nested instance set, which repre-
sents the set of types for which comparison operation is defined in
SQL. The necessary extension to the SML# compiler is small and
modular.

4.2.2 Existential types for database connections
In order for an SQL expression _sql db => sql to have well-
defined meaning, any component in sql must reference to the same
server connection. As we have pointed out, one way to ensure
this restriction is to consider the database connection db as an ab-
stract package having an existential type ∃t.σ providing the ca-
pability of accessing its component tables and columns therein.
The resulting type system yields sound typing for SQL expres-
sions, successfully excluding anomalous terms such as the example
shown in Section 3.3.3. However, introduction of existential types
in their general form makes the type inference system of ML in-
complete. Our solution is to restrict existential types to the com-
bination of _sql db => sql and _sqleval (or _sqlexec.) Here
we only explain the case for _sqleval. The case for _sqlexec
is the same. The basic role of the construct _sqleval (_sql db
=> sql) conn is to bind db to a connection denoted by conn. In
addition, the type system generates a unique witness type and prop-
agated through all the db component in sql. To represent this effect,
the type system treats this application specially. When typecheck-
ing the above application, the type system generates a new type ’a
dbi, unifies the type of db, infers the application, and finally checks
that the newly generated type variable ’a does not occur in both the
type environment and the type judgment. This final check ensures
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that all the elements in sql reference to the same server connection
denoted by conn.

4.3 SQL type definitions
Our strategy is to translate SQL expressions to core ML programs
of SML#. This requires that all the types of SQL component such
as “database” and “tables” used in the generated programs should
have been defined. For this purpose, we extend the set of built-in
types of SML# with the following types.

datatype (’a, ’b) db =
DB of ’a * ’b dbi

datatype (’a, ’b) table =
TABLE of ’a * string * ’b dbi

datatype (’a, ’b) row =
ROW of ’a * string * ’b dbi

datatype (’a, ’b) value =
VALUE of ’a * string * ’b dbi

The first type argument ’a of db, table, row, and value is the
type of the toy program. The second type parameter ’b is used
to propagate a unique connection type explained above. The string
component in the implementations of table, row, and value holds
the (partially constructed) target SQL command string.

4.4 Core ML program generation
Using these types and their data constructors, the compiler gener-
ates core ML programs of SML# from SQL expressions. This is
done by adding a case for each of SQL expression syntax to the
SML# elaboration phase, which recursively traverse a given source
program. Each case is largely mechanical with a special care of
ensuring that a unique connection type should be properly propa-
gated. As a simple example, component selection, #x.l, in a source
program is translated to the following core ML program.

case x of DB (y, {l=z,...}) => TABLE ("l", y, z)

In this program, "l" is a string literal to appear in the SQL com-
mand string being generated, the part {l=z,...} => z is the toy
implementation that generates polymorphic typing of this selection,
and y => y is for propagating a unique connection type. Each SQL
operation is translated to a program that composes the toy parts,
concatenates the SQL command strings, and propagates the unique
connection type.

Since some of SQL components only concatenate the SQL
command strings, connection types need to be propagated through
SQL command string concatenation. For this purpose, we intro-
duce a special string concatenation function concatQuery of type
(string * ’a dbi) list -> string, and passes component
strings together with connection witnesses to this function. This
function concatenates a list of string with the typing effect of uni-
fying all their connection types to the same type. This achieves the
desired typing effect.

There is one more subtlety that should be take care of in achiev-
ing seamless integration of SQL into SML#. We have so far iden-
tified SQL rows (tuples) with Standard ML labeled records. This
identification works fine for component selection and its typing.
However, internal representations of SQL rows returned from an
SQL server are different from those of ML record representation.
This implies that a row fetched from the result of an SQL expres-
sion returned from a server should be converted to the internal rep-
resentation of Standard ML. Under our strategy, this requires to
generate a core ML program that performs such conversion. More-
over, we need to generate such a conversion function for each SQL
query using its type information. This is best done at the time of
translating a query expression, when all the necessary type infor-
mation is available. Our source level translator generates a core ML

Source program:

_sql db =>
select #person.name as name
from #db.people as person

Translated core ML terms:

fn db as DB (dbi, _) =>
let
val (tabname, person) =

case (case db of
DB (i, {people = w, ...}) =>
TABLE (("people", i), w)) of

TABLE (t as (_, i), w) =>
(t, ROW (("person", i), w))

val VALUE (nameExp, nameW) =
case person of

ROW (n, {name = w, ...}) =>
VALUE (concatDot (n, "name"), w)

val witness = {name = nameW}
in
QUERY

(concatQuery [("SELECT ", DBI),
nameExp,
(" AS name FROM ", DBI),
tabname,
(" AS person", DBI)],

witness,
fn RESULT result =>

{name = fromSQL
(0, result, #name witness)})

end

Figure 4. example of query translation

program that performs this conversion just after an entire query is
constructed. The result of our translation of an SQL query is then a
core ML program having the following type.

datatype ’a query =
QUERY of string * ’a * (result -> ’a)

The first component is an SQL command string to be sent to a
server, the second component is a toy implementation, and the third
component is the conversion function.

Figure 4 shows an example of translating a query expression
into a core ML program.

4.5 Connection management
The remaining component of our extension is connection manage-
ment. This is responsible for defining a server, establishing a con-
nection, and sending a query over connection. Among them, the
third one is a simple source level library function that calls one of
C API provided by the database server through SML# C function
interface described earlier. Server definition and connection estab-
lishment need to perform runtime typechecking to ensure the type
safety of SQL expressions.

We have developed a typing machinery to infer a most general
type for any legal SQL query expression. This inferred type should
be checked against the type of a database stored in a database server
to be connected. Since a database server is external to SML# pro-
grams, we model a database server as an object of type dynamic
as proposed in [1]. In this formalism, an expression having a type
dynamic is used with an explicit type annotation. Its runtime rep-
resentation is a pair of its value and its runtime type information.
This runtime type information is checked against the explicit type
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annotation only once when this object is loaded (linked) in a pro-
gram.

In our language, this model is implemented by checking that
the internal type of the connected database server is the same as the
static type specified in _sqlserver expression when a database
server is connected by SQL.connect primitive. This is done as fol-
lows. _sqlserver expression is translated to a core ML code that
generates a string representation of the annotated type τ together
with the location information of the server. SQL.connect primi-
tive is implemented as a core ML function. This function takes a
server object of type τ server containing a server location and
type information, opens a connection using the server location in-
formation, and issues a query to the database to obtain its scheme
information, and then it checks that the connected database has the
type τ using its string representation and the obtained scheme in-
formation. If the type check succeeds then SQL.connect succeeds
and yields a value of type τ conn, otherwise it raises runtime ex-
ception. After this connection, a database is safely used with typed
first-class SQL query expressions.

4.6 SQL server bindings
Since the SQL syntax of our language is (a subset of) the standard-
ized SQL language, our language should be independent of any par-
ticular SQL server implementation. However, C APIs needed to im-
plement the connection management are varied with SQL servers.
For our system to work with any server that conform to the SQL
standard, we introduce a server binding module and its interface
which absorbs the difference of low-level C APIs. Any user-level
primitive features of SQL extentions, such as SQL.fetchAll and
SQL.connect functions, are implemented by using this binding
module.

The server binding interface requires the binding module imple-
mentator to provide the following functions.

1. Low-level connection management functions through abstract
connection handles, and string-based query execution func-
tions.

2. A function to obtain schema information for runtime type-
checking.

3. A mapping of type names from database types to ML types,
and the corresponding set of conversion functions from query
results to ML values.

With the functionality provided by any modern SQL database sys-
tems, it is routine to implement these functions by writing a small
amount of code. On the requirement 1, database systems usually
offer such a string-based low-level query interface, as discussed
in section 1.1. The requirement 2 can be easily realized by a se-
ries of SQL queries issued through the low-level query interface
since database systems usually implement system catalogs as ta-
bles which is accessible to an ordinary SELECT command. The re-
quirement 3 can be implemented by composing low-level methods
to retrieve tuples and fields from the query result and representa-
tion conversion functions. This is also streightforward except that a
little care is needed to define the type name mapping.

We have implemented binding modules for PostgreSQL and
MySQL. Any other database systems can be supported just by
writing a binding module for the database.

5. Conclusions and Future Works
We have presented a new generation of Standard ML that seam-
lessly integrates SQL. In this language, a legal SQL expression is
a polymorphically typed first-class citizen that are freely combined
with any features of Standard ML, including high-order functions,
data type definition, and its module system. The distinguishing fea-

ture of our language is that those SQL expressions are not evaluated
in the ML language runtime, but they are sent to a real database
server. This makes efficient practical database programming di-
rectly available in a high-level and reliable functional programming
language.

We have solved a number of typing and implementation issues
and have implemented the language. The implementation is done
by extending the compiler of SML#, which is an extension of Stan-
dard ML with record polymorphism. Since the only crucial techni-
cal typing device we have used is record polymorphism presented
in [28], we also expect that our method can be transferred to any
other ML-style language as far as its type system contains a typ-
ing mechanism that is at least as powerful as record polymorphism
such as OCaml objects based on Remy’s record polymorphism [31]
or Haskell type classes [17].

This is a step toward making practical database programming
seamlessly available in a typed high-level programming language.
A number of interesting future issues remain to be investigated. We
briefly mention some of them below.

As mentioned in Section 1.1, there are several proposals for
high-level query languages for advanced applications. One way
of making these approaches practical and scalable would be to
implement those advanced data models on top of SQL running
on an efficient database server. The idea would be to make SQL
relations as basic data structures to implement those high-level
data model primitives. Since in our language various components
in SQL databases are first-class values that are freely and directly
manipulated by programs, our language should serve as an ideal
basis for those applications.

Web programming framework is also a promising applica-
tion area of our language. Interoperation between languages and
databases are crucial in Web programming, and most of practical
Web application framework such as Ruby on Rails provides various
database access supports. Seamless integration of SQL with higher-
order functional language would open up high-level Web applica-
tion framework supporting various features such as “mashup” of
variety of data sources and services.

Another interesting future work is to design a large scale dis-
tributed data manipulation system based on our language. Such a
system would provide high-level and powerful alternative to map-
reduce model [12]. As observed in [5], many future cloud appli-
cations would be benefited from database capability such as the
ability to join various data sources.
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